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Abstract

In this study, the magnetoelastic loads for a vibrating conductive beam exposed perpendicularly to an applied steady
magnetic field are addressed analytically by considering the effect of finite dimensions. The dynamic equation of such
vibrating beam is presented and a simply supported conductive beam is simulated. The simulation indicates that the
magnetoelastic loads affect the dynamic properties of the vibrating beam significantly only when the thickness of the
beam is extremely small. This work is the basis for investigating and analyzing the field-controllable dynamic properties
of a sandwich beam composed of conductive thin outer skins and a magnetorheological elastomer core, which will be
presented in the second part of this research.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich beams with magnetorheological elastomer (MRE) cores possess field-controllable flexure
rigidities due to the field-dependant shear modulus of the MRE core (Zhou and Wang, 2005). Due to
the rapid and reversible change of the flexure rigidity of such beams, they are very potential in developing
stiffness controllable devices for semi-active vibration control and flexible structures. Recently, Zhou and
Wang reported the field-controllable flexure rigidity of such sandwich beams with non-conductive skins
through a high-order beam theory (Zhou and Wang, 2005). The resonant frequencies and anti-resonant
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Nomenclature

H0 strength of the applied magnetic field
B0 magnetic induction of the applied magnetic field in free space
T half-thickness of the conductive beam under consideration
L half-length of the conductive beam under consideration
H distribution of magnetic field strength
B distribution of magnetic induction
J distribution of current density
E distribution of electrical field strength
h disturbance of magnetic field strength
b disturbance of magnetic induction
j disturbance of the current distribution
e disturbance of electrical field strength
u the displacement field
v the velocity field
e longitudinal extension of the conductive beam
w flexural deflection of the conductive beam
le magnetic permeability of the electro-conductive media (beam)
lr relative magnetic permeability of the electro-conductive media (beam)
fe Lorenz body force in the beam
Ppq Maxwell�s stress tensor
rpq stress tensor
/1 and /2 potential function associated with the field outside the beam. Subscript ‘‘1’’ means the space

up the beam and subscript ‘‘2’’ means the space below the beam
wx jump of the magnetic field strength along x-direction (fictitious function), see Eq. (13a)
wz jump of the magnetic field strength along z-direction (fictitious function), see Eq. (13b)
f1ðxÞ lrh

�
z ðx; T Þ on the upper surface of the beam

f2ðxÞ lrh
�
z ðx;�T Þ on the lower surface of the beam

x, z the coordinates of the laboratory frame/absolute frame
i imaginary unit
x̂ and ẑ the unit vector of x-axis and z-axis of the laboratory frame
‘‘+’’ and ‘‘�’’ these subscript means field functions inside the beam (�) or outside the beam (+)
rot curl operation

Remarks: the italic characteristics associated with the above defined vectors refer to the mod-
ulus of the vectors; For example, B0 is the modulus of B0.The italic characteristics associated
with the above defined vectors and subscribed by the indices of ‘‘1, 2, 3’’ or ‘‘x, z’’ means the
component of the vectors. For example, B0k means the k component of B0 and ux means the x

component of u.
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frequencies of such a sandwich beam with non-conductive skins were reported to change up to 30% with
applied magnetic fields. To give a systematic study on field-controllable flexure rigidity on such sandwich
beams, the case of conductive skins is very important be to investigated, which is the major objective of this
research.

For a sandwich beam with an MRE core and two conductive skins, the magnetoelastic loads should be
considered in modeling since motion of a conductive skin exposed to a steady magnetic field induces eddy
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current and generates an additional unsteady magnetic field. The field disturbance induces Lorenz body
forces and surface forces caused by the jump of Maxwell�s stress tensor on the surface. Such forces are cou-
pled with the motion of the body. The distribution of the induced-eddy current (Kwon et al., 2003) and the
electro-magneto-mechanical coupled problem (Ren and Razek, 1990) were widely addressed in literature.
Most of these works were discussed numerically, such as virtual work based edge-element method (Ren
and Razek, 1990). Qin et al. (2003) investigated the magnetic loads of a deforming cylindrical shell analyt-
ically. In their work, the magnetic field was applied parallel to the axis direction and the effect of finite
dimension was considered. As a ramification, they presented the approximation form of the analytical solu-
tion for magnetoelastic forces for extra thin vibrating beams exposed parallel to the magnetic field. How-
ever, the magnetoelastic forces for a conductive beam exposed perpendicularly to applied steady magnetic
fields are still questions unsolved, which are basis for modeling the field-controllable dynamic flexure rigid-
ity of MRE-based sandwich beams with conductive skins. This part of this research is presented to solve
this problem to provide analytical solutions of the motion-caused magnetoelastic loads applied to the con-
ductive beam and the effect of the finite dimensions on such loads. A simply supported conductive beam is
simulated numerically to show the effect of the magnetoelastic loads.
2. The magneto-mechanical coupling characteristic of a conductive beam

2.1. Problem description

A vibrating conductive beam is exposed to an applied steady magnetic field, which is along z-direction,
as shown in Fig. 1. The strength of the magnetic field is H0 and the corresponding magnetic flux density is
denoted by B0. The thickness and the length of the beam are 2T and 2L, respectively. Because of the motion
of the beam, the magnetic eddy-current will be induced such that the applied magnetic field will be dis-
turbed. The field-disturbance will lead to Lorenz body forces and surface forces due to the Maxwell�s stress
jump on the surface of the beam (Qin et al., 2003). The following analysis is to derive the analytical solution
for the Lorenz body force and the surface force due to the motion of the beam when the beam is exposed to
the steady magnetic field perpendicularly. The similar procedure and the same basic assumptions as em-
ployed in the reference (Qin et al., 2003) will also be adopted in our analysis, except we consider the case
of conducive beams placed perpendicular to applied magnetic fields.

2.2. The assumptions

The following basic assumptions are employed.

1. The beam is assumed to be made of perfective conductive material such that the conductivity approaches
infinite.
Fig. 1. Illustration of the vibrating beam exposed to the magnetic field perpendicularly.
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2. The applied magnetic field is steady and there are no steady electric current and electric field.
3. The induced disturbance of the electro-magnetic field is very small compared with the applied steady

magnetic field. Therefore, all the fields in the laboratory frame can be expressed by the following
equations:
H ¼ H0 þ h ð1aÞ

B ¼ B0 þ b ð1bÞ

J ¼ 0þ j ð1cÞ

E ¼ 0þ e ð1dÞ
where H, B, J, E are the magnetic field strength, magnetic flux density, current density and the electrical
field strength, respectively, and h, b, j, e are the induced field intensities whose modulus are much smaller
than their undisturbed counterparts.

4. The quasi-static assumption is employed such that the first-order derivative of the displacement current
and the electro-magnetic momentum with respect to time can be discarded.

5. The displacement field and the velocity field are denoted by u, v, respectively. They are functions of spa-
tial coordinate and time. The gradient of u, $u, is assumed to be very small such that v equals to the
partial differential of u with respect to time.

2.3. The Lorentz force

Based on the Euler–Bernoulli beam theory, the displacement distribution can be assumed in the follow-
ing form
ux ¼ eðx; tÞ � z
ow
ox

ð2aÞ

uz ¼ wðx; tÞ ð2bÞ
where ux and uz is the component of u, e and w denote the longitudinal extension and flexural deflection of
the beam, respectively.

Under the basic assumptions, the Ohm�s law and Faraday�s law yield:
b� ¼ ðB0 � rÞu� B0ðr � uÞ ð3Þ
where the superscript ‘‘�’’ denotes the quantitative inside the beam. Since the steady magnetic field is ap-
plied along z-direction and u is a two-dimensional vector function with respect to x- and z-coordinates, the
magnetic flux density inside the beam can be further recast into
b� ¼ �B0

ow
ox

x̂� B0ẑ
oe
ox
� z

o
2w

ox2

� �
ð4Þ
where x̂ and ẑ are the unit vector of x- and z-coordinates, respectively, B0 is the modulus of B0.
Up to the first-order approximation of the induced magnetic field, the Lorenz body force applied to the

beam can be expressed as
fe ¼ J� B ¼ rot
1

le

b�
� �

� B0 ¼ �
1

le

r2u
� �

� B0

� �
� B0 ð5Þ
where le is the magnetic permeability of the beam.
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Substitution of Eq. (2) into the above equation yields
fe ¼ B2
0

le

o2e
ox2
� z

o3w
ox3

� �
x̂ ð6Þ
Eq. (6) indicates that the Lorenz body force caused by the vibration of the beam is along x-direction. Thus,
this force will induce tensile deformation.

2.4. The surface force due to the Maxwell’s stress jump on the surface

From the small disturbance assumption, the stress on the surface of the beam caused by Maxwell�s stress
jump can be expressed as
rpqnq ¼ Pþqp �P�qp

� 	
nq ¼ B0qnq hþp � lrh

�
p

h i
� B0k hþk � lrh

�
k

� �
np; p ¼ x; z ð7Þ
where the Einstein�s summation convention referred to the repeated indices is adopted; lr � le/l0 is the rel-
ative permeability of the beam; the superscript ‘‘+’’ and ‘‘�’’ denote the quantities on the outside and inside
of the beam surface, respectively; np is the component of the outward normal of the deformed beam surface;
Ppq is the Maxwell�s stress tensor.

In Eq. (7), the stress on the surface is caused by the discontinuity of the magnetic field strength on the
surface of the beam. Considering the applied steady magnetic field is along z-direction, Eq. (7) can be recast
into

At z = T or z = �T:
r�zx ¼ Pþzx �P�zx

� �
¼ B0 hþx � lrh

�
x

� �
¼ B0 hþx þ B0

l0

ow
ox

� 	
r�zz ¼ Pþzz �P�zz ¼ B0 hþz � lrh

�
z

� �
¼ 0

8<: ð8Þ
Thus, it can be seen the surface stress caused by the Maxwell�s stress jumps will induce shear deformation of
the beam, and will also generate flexural moment distribution on the beam.

From Eqs. (6) and (8), the magnetoelastic loads are completely governed by the motion of the beam and
the magnetic field strength outside the beam. Thus, efforts will only be paid on solving h+, the disturbance
of the magnetic field strength outside the beam.
3. The disturbance of the magnet field outside the beam

3.1. Governing equations

As stated in the above section, the magnetic field inside the beam is completely determined by the defor-
mation of the beam (see Eq. (4)). Thus, in the analysis of the outside magnetic field, the deformation of the
beam is neglected and the problem is recast into solving the magnetic field with the given magnetic bound-
ary condition on the surface of the beam. Under the quasi-static assumption, introduction of two potential
functions defined in the upper area and lower area of the beam, respectively, yields:
r/1 ¼ hþ1 and r/2 ¼ hþ2 ð9Þ
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Thus, the governing equation is Laplace equation as stated below together with the boundary condition.
o2/1

ox2
þ o2/1

oz2
¼ 0 for z > T or jxj > L ð10aÞ

o/1

oz






z¼T

¼ f1ðxÞ ¼ lrh
�
z ðx; T Þ for jxj < L ð10bÞ
Similarly, /2 should satisfy the following equations
o2/2

ox2
þ o2/2

oz2
¼ 0 for z < �T or jxj > L ð11aÞ

o/2

oz






z¼�T

¼ f2ðxÞ ¼ lrh
�
z ðx;�T Þ for jxj < L ð11bÞ
It should be pointed out that only the magnetic boundary condition on the upper and lower surface of the
beam is considered since their areas are much larger than that of other surfaces of the beam. The tangent
component of the magnetic field across the beam surface is discontinuous, which indicates the electrical cur-
rent will be generated on the surface of the beam in order to satisfy Ampere�s law. The compatibility con-
ditions between the potential functions /1 and /2 are enforced at z = 0 when jxj > L, which yields
o/1

ox
¼ o/2

ox
; z ¼ 0 and jxj > L ð12aÞ

o/1

oz
¼ o/2

oz
; z ¼ 0 and jxj > L ð12bÞ
Similar to the method presented in the reference (Qin et al., 2003), two fictitious functions are introduced to
lead the explicit solution of the two potential functions as follows:
At z ¼ 0 :
o/1

ox
� o/2

ox
¼

0 jxj > L

wxðxÞ jxj < L

�
ð13aÞ
and
o/1

oz
� o/2

oz
¼

0 jxj > L

wzðxÞ jxj < L

�
ð13bÞ
where wx(x) and wz(x) are the two introduced fictitious functions.

3.2. Solution of the potential functions

The Fourier transform of /m for m = 1, 2 with respect to x is defined as
/̂mðx; zÞ ¼
Z þ1

�1
/mðx; zÞ expð�ixxÞdx ð14Þ
where i is the imaginary unit.
Applying Fourier transform on both sides of Eqs. (10a) and (11a) yields
/̂1 x; zð Þ ¼ c1 xð Þ exp � xj jzð Þ ð15Þ
/̂2 x; zð Þ ¼ c2 xð Þ exp xj jzð Þ ð16Þ
where c1(x) and c2(x) are functions to be determined by the boundary condition.
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Substituting Eqs. (15) and (16) to Eqs. (12) and (13) yields
c1 xð Þ ¼ 1

i2x

Z L

�L
wx xð Þ exp �ixxð Þdx� 1

2 xj j

Z L

�L
wz xð Þ exp �ixxð Þdx ð17aÞ

c2 xð Þ ¼ � 1

2 xj j

Z L

�L
wz xð Þ exp �ixxð Þdx� 1

i2x

Z L

�L
wx xð Þ exp �ixxð Þdx ð17bÞ
Thus, the potential function /1 can be expressed as
/1 x; zð Þ ¼ 1

2p

Z þ1

�1
c1 xð Þ exp � xj jzð Þ exp ixxð Þdx

¼ 1

2p

Z þ1

�1

1

i2x

Z L

�L
wx sð Þ exp �ixsð Þds

� 1

2 xj j

Z L

�L
wz sð Þ exp �ixsð Þds

2664
3775 exp � xj jzð Þ exp ixxð Þdx

¼

Z
�L

L

wx sð Þ
Z þ1

0

exp �xzð Þ sin x x� sð Þð Þ
2px

dx

� 

ds

�
Z L

�L
wz sð Þ

Z þ1

0

exp �xzð Þ cos x x� sð Þð Þ
2px

dx

� 

ds

8>>><>>>:
9>>>=>>>; ð18Þ
The following identities can be used for Eq. (18):
Z þ1

0

exp �axð Þ sin bxð Þ
x

dx ¼ arc cot
a
b

� 	
ð19aÞZ þ1

0

exp �xað Þ cos xbð Þ
x

dx ¼ � 1

2
ln a2 þ b2
� �

ð19bÞ
Thus, Eq. (18) can be recast into
/1 x; zð Þ ¼ 1

2p

Z L

�L
wx sð Þarc cot

z
x� s

� 	
dsþ 1

4p

Z L

�L
wz sð Þ ln z2 þ x� sð Þ2

� 	
ds ð20Þ
Similarly, the potential function /2 can be expressed as
/2 x; zð Þ ¼ 1

2p

Z L

�L
wx sð Þarc cot

z
x� s

� 	
dsþ 1

4p

Z L

�L
wz sð Þ ln z2 þ x� sð Þ2

� 	
ds ð21Þ
Substituting the boundary conditions, Eqs. (10b) and (11b), to Eqs. (20) and (21), the fictitious functions
wx(x) and wz(x) can be identified:
�
Z L

�L
wx sð Þ x� s

T 2 þ x� sð Þ2
dsþ

Z L

�L
wz sð Þ T

T 2 þ x� sð Þ2
ds ¼ 2pf1 xð Þ ð22aÞ

�
Z L

�L
wx sð Þ x� s

T 2 þ x� sð Þ2
ds�

Z L

�L
wz sð Þ T

T 2 þ x� sð Þ2
ds ¼ 2pf2 xð Þ ð22bÞ
Thus, wx(x) and wz(x) can be solved by the following two integral equations.
Z L

�L
wx sð Þ x� s

T 2 þ x� sð Þ2
ds ¼ �p f1 xð Þ þ f2 xð Þ½ � ð23aÞZ L

�L
wz sð Þ T

T 2 þ x� sð Þ2
ds ¼ p f1 xð Þ � f2 xð Þ½ � ð23bÞ
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Once wx(x) and wz(x) is obtained, the potential functions can be obtained though Eqs. (20), and (21)
consequently.

An interesting phenomenon in Eq. (23) deserves our special attention. If f1(x) and f2(x) are equal, we
have wz(x) = 0; if f1(x) and f2(x) are opposite, we have wx(x) = 0. This phenomena is held no matter what
the thickness of the beam is. Thus, when the thickness of the beam approaches zero, it is doubtful to assume
f1(x) = f2(x) or f1(x) = �f2(x) only because the thickness is negligible, which was employed in the reference
(Qin et al., 2003). In the following, we will use the phenomenon revealed by Eq. (23) in our analysis of the
special case of extra thin beams.

A summary to the whole solution process is given as follows. First, the magnetic field inside the conduc-
tive skin can be easily obtained once the deformation of the beam is given. And, as a result, the boundary
conditions of f1(x) and f2(x) are also yielded. Secondly, the fictitious functions wx(x) and wz(x) can be deter-
mined through Eqs. (23a) and (23b) considering the boundary condition. Thirdly, the solutions of induced
magnetic potentials are determined by substituting the solutions of wx(x) and wz(x) into Eqs. (20) and (21).

From the obtained potential function, the magnetic field strength is
hþ1x ¼ hþ2x ¼
o/1 x; zð Þ

ox
¼ o/2 x; zð Þ

ox

¼ 1

2p

Z L

�L
wx sð Þ z

x� sð Þ2 þ z2
dsþ 1

2p

Z L

�L
wz sð Þ x� s

z2 þ x� sð Þ2
ds ð24aÞ

hþ1z ¼ hþ2z ¼
o/1 x; zð Þ

oz
¼ o/2 x; zð Þ

oz

¼ � 1

2p

Z L

�L
wx sð Þ x� s

x� sð Þ2 þ z2
dsþ 1

2p

Z L

�L
wz sð Þ z

z2 þ x� sð Þ2
ds ð24bÞ
4. The field-disturbance and the magnetoelastic loads for extra thin beams

In this section, the case of extra thin beams exposed to magnetic field perpendicularly will be investigated
analytically. The stress due to Maxwell�s stress jump on the surface and the characteristics of the distur-
bance field due to the motion-induced eddy current on the conductive beams are two main issues for this
section.

4.1. The fictitious functions wx and wz for extra thin beams

From Eq. (4), f1(x) and f2(x) can be expressed as
f1 xð Þ ¼ �B0

l0

oe
ox
� T

o
2w

ox2

� �
ð25aÞ

f2 xð Þ ¼ �B0

l0

oe
ox
þ T

o2w
ox2

� �
ð25bÞ
Thus, the following relationships are valid
f1 xð Þ þ f2 xð Þ ¼ �B0

l0

oe
ox

ð26aÞ

f1 xð Þ � f2 xð Þ ¼ �2
B0T
l0

o2w
ox2

ð26bÞ
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From the above equation and Eq. (23), it can be seen wx(x) depends on the longitudinal displacement of the
beam while wz(x) relies on the flexure deflection. Since the longitudinal displacement is associated with the
Young�s modulus of the beam, which is much larger than flexure rigidity of extra thin beams, the longitu-
dinal displacement can be neglected. Thus, we have f1ðxÞ ¼ �f2ðxÞ and f1ðxÞ ¼ � B0T

l0

o2w
ox2 .

For the case of thin beam, T
L is assumed to approach zero. According to Appendix B, Eq. (23) can be

expressed as
limeT!0

Z L

�L
wx sð Þ x� s

T 2 þ x� sð Þ2
ds ¼ limeT!0

Z 1

�1

wx ~sLð Þ ~x� ~seT 2 þ ~x� ~sð Þ2
d~s ¼ wx xð Þ ln xþ L

x� L





 




¼ �p f1 xð Þ þ f2 xð Þ½ � ð27Þ
Thus, it yields
wx xð Þ ¼ �p f1 xð Þ þ f2 xð Þ½ �
ln xþL

x�L



 

 ð28Þ
Similarly, according to Appendix A, the solution for
R L
�L wzðsÞ T

T 2þðx�sÞ2 ds ¼ p½f1ðxÞ � f2ðxÞ� is
wz xð Þ ¼

f1 xð Þ � f2 xð Þ �L < x < L

0 x > L or x < �L
f1 xð Þ�f2 xð Þ

2
x ¼ L or x ¼ �L

8>><>>: ð29Þ
4.2. The stress due to Maxwell�s stress jumps on the surface of extra thin beams

From Eqs. (24), (26) and (27), the strength of the magnetic field at the outer surface of the thin beam can
be expressed as
lim
T=L!0

hþ1x z ¼ Tð Þ ¼ � 1

2

p f1 xð Þ þ f2 xð Þ½ �
ln xþL

x�L



 

 þ f1 xð Þ � f2 xð Þ
2p

ln
xþ L
x� L





 



 ð30aÞ

lim
T=L!0

hþ2x z ¼ �Tð Þ ¼ 1

2

p f1 xð Þ þ f2 xð Þ½ �
ln xþL

x�L



 

 þ f1 xð Þ � f2 xð Þ
2p

ln
xþ L
x� L





 



 ð30bÞ

lim
T=L!0

hþ1z z ¼ Tð Þ ¼ f1 xð Þ ð30cÞ

lim
T=L!0

hþ2z z ¼ �Tð Þ ¼ f2 xð Þ ð30dÞ
From Eq. (8) and substituting the expression of f1(x) and f2(x) solved by Eq. (26), the Maxwell�s stress jump
on the surface for this special case can be expressed
rzx ¼
B2

0

l0

p

2 ln xþL
x�L



 

 oe
ox
� T

p
o2w
ox2

ln
xþ L
x� L





 



þ ow
ox

 !
ð31Þ
4.3. Characteristics of the field-disturbance due to the motion-induced eddy current

We have concluded that f1ðxÞ ¼ �f2ðxÞ is reasonable for thin beams. Thus, by Eqs. (23) and (24), the
strength of the field-disturbance, h, outside the thin beam follows the following inequalities:



Fig. 2. Pattern of the field-disturbance due to motion induced eddy current on thin conductive beams.
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hþ1x



 

 ¼ hþ2x



 

 ¼ 1

2p

Z L

�L
wz sð Þ x� s

z2 þ x� sð Þ2
ds












 6 1

2p

Z L

�L
wz sð Þds





 



 Z L

�L

x� s

z2 þ x� sð Þ2
ds














¼ 1

2p

Z L

�L
wz sð Þds





 



 ln
z2 þ L� xð Þ2

z2 þ Lþ xð Þ2












 ð32aÞ

hþ1z



 

 ¼ hþ2z



 

 ¼ 1

2p

Z L

�L
wz sð Þ z

z2 þ x� sð Þ2
ds














6
1

2p

Z L

�L
wz sð Þds





 



 arctan
L� x

z
þ arctan

Lþ x
z





 



 ð32bÞ
From the above two equations, we can see the functions of ln z2þðL�xÞ2

z2þðLþxÞ2




 


 and arctan L�x
z þ arctan Lþx

z



 

 deter-

mines the pattern of the x component and z component of the field-disturbance outside the conductive thin
beam, respectively. Fig. 2 illustrated the contours of these two functions against z/L and x/L. In Fig. 2(a),
the x component of h outside the beam reaches a sharp peak at the ends of the beam and decays dramat-
ically while the location deviates from the ends of the beam. In Fig. 2(b), the z component of h outside the
beam is concentrated in the narrow region of �L6x6L and decreases when jxj or jzj become larger.

It should be stressed, due to the assumption of small disturbance, the modulus of h is extremely small
compared with that of H0. This remark would be very useful in modeling MRE-based sandwich beams with
conductive skins, which is the main issue of the other part of the issue. Because it indicates the field distur-
bance near the two skins of MRE-based sandwich beams with conductive skins can be solved separately as
if they are immersed in applied steady magnetic fields solely.
5. Simulations on a simply supported beam

5.1. The governing equation of a vibrating beam

Pure bending is considered in the following simulations. An infinitesimal element of the beam is shown in
Fig. 3. The Maxwell�s stress jump will induce the shear force rzx on the upper and lower surface; the shear
force at the left and right surface are denoted as Q and Qþ oQ

ox dx, respectively; the flexure moment at the
left and right surface are denoted as M and M þ oM

ox dx; the Lorenz body force will also induce a moment,
which is denote as ML; the vertical force acting on the beam is denoted as q(x,t). By Newton�s second law,
the dynamic equation of this part is
qA
o2w
ot2

dx ¼ � oQ
ox

dx� q x; tð Þdx ð33Þ
Neglecting the inertial moment effect, the resultant moment applied to the tiny part should be zero. Thus,
up to the first-order approximation, the equilibrium equation is
�Qdxþ oM
ox

dx�ML � rzxAdx ¼ 0 ð34Þ
where A is the cross-section of the beam.
From Eq. (6), ML satisfies the following equation
ML ¼ �dxH
Z T

�T
z2 B2

0

le

o3w
ox3

dz ¼ �dx
T 2B2

0

3le

o3w
ox3

A ð35Þ



Fig. 3. Force diagram of the beam exposed to magnetic field perpendicularly.
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Thus, substituting Eqs. (29) and (35) into Eq. (34) yields
qA
o2w
ot2
þ EI þ B2

0At2

3le

� �
o4w
ox4
þ A

B2
0

l0

T
p

o3w
ox3

ln
Lþ x
L� x

� �
þ A

B2
0

l0

2LT

p L2 � x2
� �� 1

 !
o2w
ox2
¼ �q x; tð Þ ð36Þ
where EI is the flexure rigidity of the beam.
The governing equation for a beam exposed to an applied magnetic perpendicularly is hence derived.

5.2. The boundary conditions of the simply supported beam

At the two ends of the beam, the vertical displacements are assumed to be zero, which yields
w �Lð Þ ¼ w Lð Þ ¼ 0 ð37Þ

The flexural torque at the two ends should be balanced by the moments induced by magnetoelastic loads.
Thus, from Eqs. (6) and (31), the boundary condition at the two ends is
1þ 3B2
0

l0pET
ln

xþ L
L� x

� �
o2w
ox2
¼ 3B2

0

l0ET 2

ow
ox
� B2

0

leE
o3w
ox3

ð38Þ
Because ln xþL
L�x will goes toward infinite as x approaches �L or L. The following conditions must be enforced

to satisfy the above equation:
o2w
ox2






x¼�L

¼ 0 ð39aÞ
and
o2w
ox2
jx¼L ¼ 0 ð39bÞ
Therefore, the governing equation of the beam shown in Eq. (36) can be solved by Galerkin method
through the basis of sin kp

2L x� kp
2

� �

k ¼ 1; 2; 3; . . .
� �

by considering the boundary condition of Eqs. (38)
and (39).

5.3. Simulation results

In the numerical simulation, the dimensions and material properties of the beam are given as follows.
The width of the beam, wb, is set to be 0.2L (1/10 of the length of the beam); the length of the beam,
2L, is 100 mm; the beam is made of aluminum whose Young�s modulus Et is 72 GPa and the density is
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2700 kg/m3; the relative permeability of the beam, lr, is set to be 10. The external harmonic force is applied
at the center of the beam with the amplitude of 1 N. The field-induced change of the amplitude of the dis-
placement at the center of the beam, where the external mechanical force is applied, is used in the simula-
tion to reveal the effect of the magnetic field on the vibration of the beam.

The thickness of the beam, 2T, is set to be 0.5 mm. The amplitude of the displacement at the center of the
beam against the frequency of the external force at different magnetic field strengths is given in Fig. 4. From
the figure, the displacement at the center of the beam, jw(0)j, changes with the induction of the applied mag-
netic field especially in the low frequency range which is at left of the first resonant frequency. In this low
frequency range, the displacement decreases with the applied magnetic field indicating the stiffness of the
beam increases with the applied magnetic field. The observation is reasonable since the induced eddy cur-
rent will prevent the motion of the beam (Faraday�s law). The resonant frequencies and the anti-resonant
frequencies decrease with the applied magnetic field, also indicating the stiffness of the beam increases with
the applied magnetic field. The induced surface forces by the Maxwell�s stress jump on the surface of the
beam at the first resonant frequency x

2p ¼ 146 Hz
� �

is given in Fig. 5 while the corresponding Lorenz body
force at the upper surface of the beam (z = T) is given in Fig. 6. The two curves are much like and are anti-
symmetric around x = 0, the center of the beam. The maximum value occurs at the ends of the beam, which
indicates the induced eddy current achieves maximum value of the ends. From Faraday�s law, this obser-
vation reveals that the change of the magnetic flux at the ends of is greater than that of other parts of the
beam while, at the center of the beam, the magnetic flux remains constant during the vibration of the beam.
The above conclusions on the distribution of the induced eddy current from the calculated magnetoelastic
loads can be verified by the following. From Eq. (30a), the induced electrical current density Js on the con-
ductive beam can be determined by the Ampere�s law:
Fig. 4. The amplitude of the displacement at the center of the beam at different magnetic field strengths for the beam with
T = 0.25 mm.



Fig. 5. The surface shear stress induced by the Maxwell stress jumps at the surface for the beam with T = 0.25 mm and B0 = 1 T.

Fig. 6. The Lorenz body force at the upper surface of the beam with T = 0.25 mm and B0 = 1 T.
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Js ¼ hþx � h�x
� �

x̂� ẑð Þ ¼ �B0T
l0p

ln
Lþ x
L� x

� �
o2w
ox2
þ B0

le

ow
ox

� 

x̂� ẑð Þ ð39Þ
From the obtained deflection of the beam, w, Js can be obtained easily from the above equation, which is
shown in Fig. 7. The curve is anti-symmetric around the center of the beam, which indicates Js is dominated
by the second term in the square bracket of the above equation or the first-order derivative of w with respect
to x. The current density, Js, is very large at the ends of the beam and the average electrical current in the
left half and the right half of the beam is 26 A. Because the beam is assumed to be perfectly electro-con-
ductive, the electrical resistivity of the beam is zero in the modeling. This is an ideal case since, by Ohm�s
law, there will be no heat generated. However, in reality, the induced eddy current will generate heat due to
the electrical resistance of the beam. This procedure will convert mechanical energy to thermal energy. For
example, employing the average electrical current of 26 A and if the electrical resistance of half-beam is low-
er as 0.01 X, the generated heat on the beam would be 13.5 W. As a result, the damping ratio of the beam
will increase with the applied magnetic field. Hence, the bandwidth of the displacement curve around the
resonant frequencies will increase and the amplitude of the displacement at the resonant frequencies will
decrease.

From the Ampere�s law, the induced current density inside the beam is
j ¼ roth� ¼ z
o

3w
ox3

B0

le

x̂� ẑð Þ ð40Þ
Thus, the induced current density inside the beam is proportional to the Lorenz body force. And, therefore,
j exhibits the same characteristics of those in Fig. 6.
Fig. 7. The density of the electrical current on the upper surface of the beam with T = 0.25 mm and B0 = 1 T.



Fig. 8. The amplitude of the displacement at the center of the beam at different magnetic field strengths for the beam with T = 0.4 mm.
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In the above simulation, the thickness-length ratio of the beam is lower as 0.005. Thus, the beam under
simulation is extremely thin. It should be pointed out that the effect of the above magnetic-mechanical cou-
pling phenomenon is affected by the thickness of the beam. In the following simulation, the thickness of the
beam, 2T, is set to be 0.8 mm. The amplitude of the displacement at the center of the beam against the fre-
quency of the external at different magnetic field strengths is given in Fig. 8. From the figure, it can be seen
the change of the displacement curves is very small even though the induction of the applied magnetic field
is 1 T.
6. Conclusions

The investigation on the magnetoelastic loads subjected to conductive beam perpendicular to the mag-
netic field is presented in the paper. The Lorenz body force and the magnetic field inside the in the conduc-
tive beam can be calculated by the deformation of the beam directly. The surface force caused by the
Maxwell�s stress jump is related to the magnetic field outside the beam. By the analytical solution of the
above surface force and the Lorenz body force, the dynamic equation of a vibrating beam exposed to
the applied magnetic field perpendicularly is presented and a vibrating simply supported beam is simulated
as an example. Based on the study, the magnetoelastic loads affect the dynamic property of the vibrating
beam significantly when the thickness of the beam is small, especially around the resonant frequencies. This
study will present a foundation in analyzing the magnetic energy for deriving the governing equation of the
MRE-based sandwich beam with conductive skins through the principle of virtual work, which will be pre-
sented in the second part of this research.
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Appendix A

The limitation of the function gð~x;~zÞ ¼
R 1

�1
f ð~sÞ ~z

ð~x�~sÞ2þ~z2 ds as ~z approaches zero will be analyzed in this

appendix. This function can be rewritten into the following form:
gð~x;~zÞ ¼
Z ~xþ1

~z

~x�1
~z

f ð~x� s1~zÞ
1þ s2

1

ds1 ðA:1Þ
As ~z approaches zero, the following limitation is valid:
lim
~z!0

gð~x;~zÞ ¼ f ð~xÞ lim
~z!0

arctan
~xþ 1

~z

� �
� arctan

~x� 1

~z

� �� 

¼

pf ð~xÞ �1 < ~x < 1

0 ~x > 1 or ~x < �1
pf ð~xÞ

2
~x ¼ 1 or ~x ¼ �1

8><>: ðA:2Þ
Appendix B

The limitation of the function gð~x;~zÞ ¼
R 1

�1
f ð~sÞ ~x�~s

ð~x�~sÞ2þ~z2 ds as ~z approaches zero will be analyzed in this

appendix. This function can be rewritten into the following form:
gð~x;~zÞ ¼
Z ~xþ1

~z

~x�1
~z

f ð~x� ~s~zÞ ~s

~s2 þ 1
d~s ðB:1Þ
As ~z approaches zero, the following limitation is valid
lim
~z!0

gð~x;~zÞ ¼ f ð~xÞ
2

lim
~z!0

ln ~xþ1
~z

� �2 þ 1
h i

ln ~x�1
~z

� �2 þ 1
h i

24 35 ¼ f ð~xÞ ln ~xþ 1

~x� 1





 



 ðB:2Þ
References

Kwon, O., Chari, M.V.K., et al., 2003. Development of integral equation solution for 3-D eddy current distribution in a conducting
body. IEEE Trans. Magn. 39 (5), 2612–2614.

Qin, Z., Librescu, L., et al., 2003. Magnetoelastic modeling of circular cylindrical shells immersed in a magnetic field. Part I:
magnetoelastic loads considering finite dimensional effects. Int. J. Eng. Sci. 41, 2005–2022.

Ren, Z., Razek, A., 1990. A coupled electromagnetic-mechanical model for thin conductive plate deflection analysis. IEEE Trans.
Magn. 26 (5), 1650–1652.

Zhou, G.Y., Wang, Q., 2005. Magnetorheological elastomer-based smart sandwich beams with nonconductive skins. Smart Mater.
Struct. 14, 1001–1009.


	Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part I: Magnetoelastic loads in conductive skins
	Introduction
	The magneto-mechanical coupling characteristic of a conductive beam
	Problem description
	The assumptions
	The Lorentz force
	The surface force due to the Maxwell’s stress jump on the surface

	The disturbance of the magnet field outside the beam
	Governing equations
	Solution of the potential functions

	The field-disturbance and the magnetoelastic loads for extra thin beams
	The fictitious functions  psi x and  psi z for extra thin beams
	The stress due to Maxwell rsquo s stress jumps on the surface of extra thin beams
	Characteristics of the field-disturbance due to the motion-induced eddy current

	Simulations on a simply supported beam
	The governing equation of a vibrating beam
	The boundary conditions of the simply supported beam
	Simulation results

	Conclusions
	Appendix A
	Appendix B
	References


